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ABSTRACT 

We show how target mass corrections can be incorporated 

to all orders of the QCD parton model, for leading and non-

leading logarithms. This algorithm reporduces the ~ scaling 

analysis of totally inclusive leptoproduetion. Target mass 

eorreetions to semi-inclusive leptoproduction are computed. 

We show that the simplest final state variable to use is 

where P' is the observed hadron's momentum. 

We define double moments for this proness for which scaling 

violations and faetorization breaking are target mass 

independent. 
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INTRODUCTION 

The usual treatment of the QCD parton model neglects all con-

1 
Q2 j 

where Q is the tributions which are suppressed by powers of 

(large) momentum scale of the process. Included in this category are 

kinematic corrections associated with the mass m of an initial 

state hadron, which are of order m2/Q2 . In the case of a target 

nucleon, these corrections may be significant even when Q2 is large 

enough so that perturbation theory in is reliable. The other 

neglected effects (e.g. the amount by which the partons in the target 

are off shell, coherence effects etc. ) should all be characterized by 

the fundamental scale of the strong interactions M (e.g, the inverse 
Q 

size of the proton or A) and are therefore of order Mf;Q2 . Since 
0 

Mf;m2 ~ ·J fl] for nucleon targets, it makes sense to neglect the 
0 

latter effects while keeping the target amss corrections. 

Target mass corrections are anomalously important when th~y 
. as(Q

2
) mproton 

compete with higher order QCD corrections Slnce TI = 2 
at Q2 ~ 6. 5 GeV2, any attempt to see higher order corrections Q 

at a moderate value of Q2 must take proper account of the target 

mass. For instance in electroproduction at Q2 
= 5GeV2, [, scaling 

(target mass) corrections account for about 35% of the total scaling 

violation in the fourth moment (QCD scaling violations are an order 

a
8 

effect), 

The paper is organized as follows: In section I, we present the 

algorithm for including target mass corrections in the QCD parton 

modeL In section II, we use this algorithm to rederive the [, scaling 

analysis for totally inclusive electroproduction. In section III, we 
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analyze semi-inclusive leptoproduction. We show that the use of the 

variable wH instead of the usual zH leads to the simplest result, 

and factorization breaking are studied using double 

moments which are constructed to give target mass independent results, 

I. A. THE QCD PARTON MODEL 

The standard parton model predictions for cross~seetions involving 

an initial hadron of momentum P are of the form 

(Ll) 

where daH(k) is the hadronic (parton of type k) eross-section, 

and f k( n) (the parton distribution fund ion) is the probability of 

finding within the hadron a parton of type k with momentum p whe-re 

p (1.2) 

The QCD perturbation theory expansion for d0k is plagued with 

infrared (IR) singularities. In order to preserve the usefulness 

of eq. ( l, l), we must factor these singularities out of d ak and 

absorb them into a redefinition of fk. To regulate these singularities 

while keeping the quarks massless, we will take p2 
< 0, The following 

factorization theorem has been proven to all orders of QCD and for 

ll l 
[1, 2] 

a ogs 

(LJ) 
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The 0 renormalizedll cross section deL is to be evaluated at 
J 

2 
0 (it is IR finite). All of the 2 dependence (and thus all p p 

of the IR sensitivity) resides in r. M is an arbitrary scale 

which is introduced to allow factorization of the logs. 

Equations (1,1) and (1.3) can be combined to give 

1 l 
2: f dn do . ( n P , ~ -

2 
)r . ( n , tf ) 

j 0 J Q J 
(1.4) 

where the r factor has been absorbed into a scale dependent 

"renormalization" of f 

I· .(n ,~) 
J 

( L 5) 

Equation (1.4) gives the hadronic cross~sections in terms of 

renormalized partonic cross-sections (which can be calculated in 

' ) . [ f2l ' perturbatlon theory and process lndependent , renormallzed 

distribution functions. The latter must be inferred from experiment; 

however their ~,( dependenee is calculable in perturbation theory 

from the following equation: 

where 
(n) 

y is defined by 

(1.6) 
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( l, 7) 

We have implicitly chosen M to be the renormalization point of the 

theory. The index n denotes the th n moment of a function, i.e. 

n-1 ( ) a h a da ( 1. 8) 

B. THE COVARIANT QCD PARTON MODEL 

We now seek to extend this a.nalysis to include target mass [ fJ] 

effects. Equation (1.2) must be modified, since it makes sense only 

if the initial hadron is massless. Further, it is assumed in eq.(l.l) 

that the partonic and hadronic fluxes are the same. This is true 

if both the parton and hadron are massless, 

The latter difficulty is easily handled by considering squared 

amplitudes W instead of cross sections. The most general statement 

consistent with incoherence is then 

( 1.9) 

where WH(k) is the squared matrix element for an initial state hadron 

(type k parton), Gk describes the decomposition of the hadron into 

an on-shell, massless type k parton plus anything else, and m is 
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the hadron 1 s mass, 

Gk must be a dimensionless Lorentz invariant quantity" The 

only possibility for spin averaged initial states[ f 4l is 

u -
2 p. p 

2 
m 

( LlOa) 

( LlOb) 

Let P be in the 3 direction, Defining light cone coordinates 

we then defL'1e n via 

n 
+ + 

p /P 

which is analagous to eq, ( 1, 2), We then find 

2 d4 - p 2 
nm 

2 d¢ o( p ) -+ dn dv ~ 
21T 

-+ -+ 
where ¢ is the azimuthal angle of PT (the component of p 

orthogonal to the 3 direction). 

(Lll) 

( Ll2) 

( Ll3) 

Kinematic limits can be placed on u and n by requiring 

that the momentum of the hadron 1 s fragments (P - p) correspond to 

a positive energy, positive mass state. This gives 
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o < n < 1 n < u 

(1. ) thus gives rise to kinematically generated 

transverse momenta bounded by 

max 
1 2 

m 

( 1.14) 

( Ll5) 

s ,it easy to see why we cannot (as of yet) indude 

corrections involving the mass of a produced hadron in a semi-inclusive 

procesr3, This would involve a covariant description of the decay of 

an on~shell massless parton into the massive hadron plus a positive 

energy, positive mass state. This is kinematically impossible, Thus, 

to inc;lude these corrections, we would have to take the parton off 

shell and extend the factorizat1on theorem to include the O(p2 ) terms, 

With u, n and 8 as integration variables, eq, ( L 9) becomes 

1 
2: J du 
k 0 

dn ( 1.16) 

This equation (with Wk replaeed by its Born approximation) is 

the usual covariant parton model [ 5 ]. We seek to extend this to the 

QCD covariant parton model by allowing Wk to be calculated to all 

orders of QCD, faetorizing out the IR sensitivity, and absorbing 

it into a renormalization of Gk, in analogy to the massless case. 

The essential point in this argument is that the factorization theorem 

of eq. ( L 3) has nothing to do with target masses; it is simply a 
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property of QCD perturbation theory. 

It is easy to rewrite eq. (l,J) in terms of W's rather than 

cross-sections since these differ only by trivial flux factors. Under 

scalings of p 

(1.17) 

the extra 1 
p being induced by the flux factors. Thus we must replace 

r in eq. ( L 3 ) by f , i.e . 

W (n) k 1?' 

1 
dS ~ ( Ji2 ) . p

2
) 2 ~f Tw. gp, 2 rjk(s, 2 + o(p) 

J o J Q lV!-
(1.18) 

where W. is to be evaluated with p2 = 0. 
J 

We now show that r can be absorbed into G. From eqs. (1.16) 

and (L 

l 
l Ju J dcp ~ ( Ji2 \ . 

du dn 2 w ~ SP, ) r "k (s, 
0 0 'IT,) J 

2 

~2 ) Gk( u) ~ 
j,k 0 

(1.19) 
~ 

Let p Sp, u Bu, n Bn, and cp cp, then eq. (1.19) becomes 

( 1. 20) 

Equivalently 



where 

L du 
j 

9 

M2 
2 W.(p, ) G.(u. M~) 

J . J ' 

r.k(s, 
J. 

) G ( ~ ) 
k 13 

( 1.21) 

( 1.22) 

As in the massless case, all of the IR sensitivity has been 

r f5] 
absorbed into the definiton of scale dependent distribution functions . 

The scale dependence dictated by eq. (1.22) is given by 

(1.23) 

which is the analogue of eq. ( 1.6). 

Equations (1.21) and (1.23) constitute the covariant QCD parton 

model. As in the massless case, hadronic quantities (WH) can be 

computed in terms of partonic quantities ( W.) which have 
J 

IR finite 

perturbation expansions, and scale dependent, process independent 

ons of a single variable ( Gk), one for each parton type. The 

complications are kinematic. 

The of this analysis to semi~inclusive processes 

(neglecting the mass of the observed hadron) is trivial. Equation (1.16) 

becomes 

f
l ,(d,j, 2 dW" .(p,p I) ( ) 

du 1'11-'~'~ n 1 dn 1 D ( n 1 ) KJ G u 
2TI k d3+,1 1 0 J' 

0 0 p~p 

(L24) 
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where ( 
dWk. ) 

J-> JO is the squared hadronic 
d pi/pi 

( partonic) 

matrix elemc;nt involving a final state of a hadron ( type k parton ) 

of rromentum P 1 (p 1
) plus anything else. The decay f1mction Dk(ll 1 ) 

is the probability of the decay of the final state parton into the 

final state hadron where their momenta are related by 

P 1 = n 1 p 1 ( 1.25) 

The relevant factorization theorem is[ 1 , 2] 

dWkj 1 1 dB I 2 
( p 7 pI ) 2:: f dB f flkQ,(B'' L) 

c0'+1 I IQ 5I, ,m 0 0 B if p p 

~ 

dWSI,m 
0( Bp' B lp I' ~ )r .(S, P;},o(p2 , pl2) (1.26) 

dJ->pl I Q lliJ J, 

Manipulations analagous to those leading to eq. (1.20) give 

dWH( p' pI ) 

-~ 3r;P0 

where 

l 
2:: J du 

j, 1\: 0 

2 

Ju Jd"' Jl 2 ~~ I 2 dW (p,pr,~). _ _;::> 
dn _'+' n 1 dn D (n ,J.r )-kJ~ Q G[~M-) 

2TT k dJ-.> 1/ 1 0 J 
0 0 p p ' 

(1.27) 

( 1.28) 
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Thus the factorization of IR singularities associated with 

2 
p -+ 0 and their reabsorption into G is unchanged. The singularities 

associated with 2 pI -7 0 are absorbed into the decay functions 

as in the massless case. 

Taking M to be the renormalization point, the scale dependence 

of the moments of D is given by 

( 1.29) 

t ( n) 
where y is defined via 

or 

(M - 3 . '(n) 
+ S(g(M)) 3g)r jk ( 

- ./ '(n)- ... ? 
g (lw- ))y R-k ( g(M~)) (1.30) 

The extension of eq, (1.27) to the case of several incoming and 

hadrons is obvious, 

II. INCLUSIVE LEPTOPHODUCTION 
[5 ] 

It has been shown elsewhere that the QCD parton model and 

the twist-·two product expansion (OPE) descriptions of 

leptoproduction are equivalent in the absense of target mass 

These corrections are easily identified in the twist-two 

OPE, They arise in the nucleon matrix elements of the tilrist-two 

operators as follows 
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A( n) ( pul •• •. pun t ) k - .races ( 2 .l) 

The traces in eq. (2.1) are uniquely determined by the tracelessness 

of the operators; they involve powers of P2 
= m2 . 

Taking accmmt of the traces gives rise to the ~ scaling 

formulae of refs. 3 and 4. It is our purpose to derive these results 

from the QCD covariant parton model [f6l. 

The squared matrix elements relevant to leptoproduction are 

mUV= 
VVH- ( 2.2) 

where the J's are electromagnetic or weak currents. Equation (1.20) 

becomes 
1 u 

du f d n fd2¢ W~v ( p )G . ( u, Q2 ) 
0 1T J J 

( 2. 3) 

where W~v is defined by analogy to Wuv wi+h the hadron replaced J H v. 

by a type j parton; and we have chosen M, Q, and the renormalization 

point to be identical (thus W has an implicit Q
2 dependence through 

We now introduce the usual Bjorlwn scaling variables 

= Q2 = Q2 
XH - 2P • q X 2p • q 

and trade the integration varlable n for 
[f7] 

X , Then eq. ( 2 . 3 ) 

becomes 



wfl\) ~ 2 
J. (p,q) G.(u,Q ) 

- J 

where !; is the usu<:U !; variable 

t;,·. 

1 + 

the determinential factor R is 

1 + 

and we have made use of the kinematic constraint 0 < x < 1 

We define. the usual strncture functions as follows 

2 \) ' P,qp 2 
Q ) • fl 1\p 1\ w ( Q ) 

+ lS p~ V JH XH, 

with analagous definitions for Wr, (x), r = 1, 2, 3. 
;1\: 

(2.5) 

( 2.6) 

( 2. 7) 

(2.8) 

We now form two projections of W~v which determine the non-

parity-violating structure functions WlH and W2H: 
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( 2. 9a) 

.1; J1 
dx J 1 ~u ~ 2 

= R -
2 

du W.(x)G.(u,Q ) 
j i; x ~ /x Jfl J 

= R 

;-;-uv 
.1; 1 dx fl 2 p w·, ( X )P 2 
f -

2 
du(4R ll J v ) G.(u, Q ) 

j " c Q J I; X s/X 
( 2 '9b) 

The partonic contractions are given by 

(2.10a) 

~ 

2 
2 

vw
2

. 
+ . R m 2 ( UX-~JJ 2x J 

Q 
( 2 .lOb) 

Since 
vw

2
. 

___ J and m 
2x vvij depend only on x (and of course g(Q2 ) ), 

these contractions are ¢ independent, thus the ¢ integral has 

been dropped in eq, (2.9). Note also that the u dependence of the 

contractions is explicit and trivial. 
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Equation (2,9) involves integrals of the form 

1 
I . ( E, ) = J dx 
n E, 

Jl 
du W(x)G(u)(ux -E,)n, 

E,/x 
(2.11) 

These can be simplified by introducing functions g. defined by 
J 

~ 2 Jl ~ 2 g.(a,Q):: du G.(u,Q) 
J a J 

( 2.12) 

Note that, in terms of moments (defined by eq,(l.8)) 

( 2.13) 

thus the scaling law of eq. ( 1. 23) becomes 

( 2.14) 

We now prove the following theorem 

1 

This is easy to show for n = 0. The result for larger n can 

follows by induction since both sides of eq. ( 2.11) obey 

di ( E, ) 
n ( 2.16) 

and the boundary condition 

(2.17) 
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Equation (2.15) shows that the distribution functions g always 

appear in convolutions with partonic structure functions. This leads 

us to the following definitions 

~ (a,Q2) 
1 

Q2) J dS ~ ( - ( 2 ) ) ~ ( a 2: .7 w1 j S,g Q gj 13 , 
j a B ' 

( 2, l8a) 

~ 2 

h2(a,Q2) =4 
J1 dS \!W 2 ,} S 'g( Q ) ) ::. a Q2) 2: -- t:;.( ~' j a s2 2 J B 

( 2 .18b) 

or, in terms of moments 

( 2 .l9a) 

( 2 .19b) 

Then, from eqs. (2.9)+(2.11), (2.15), and (2.18) we obtain 

1 ~ 2 2 4 R [ h2(t;,Q ) - J~(i;,Q )] (2.20a) 

( 2 .20b) 

Equation (2.20) has exactly the same form as the t; scaling 

equations of ref, ( 3) [fS] , with the replacements 



( 2. 21) 

The F's of ref. 3 are defined in terms of their moments: 

F(n) (Q2) 
. ( 1, 2) 

where the (/ n) . . . , are the coefficlent fu:rwtlons of the twlst two 

operators of spin n, and the are the corresponding reduced 

matrix elements defined in eq. (2.1). The index j completes the 

identification of the operator; there is one j for each relevant 

parton type. 

The Q2 dependence of the A(n) is governed by the anomalous 

dimension matrix~ (n) of the associated operators 

( 2. 23) 

The coefficent functions and anomalous dimensions of the OPE 

can be related to tbe W and y of the parton model by computing 

w
1
]J\J from the OPE and comparing the results to eq. (1.18). Using a 
s: 

[ 7] 
particular definition of the operators we see that the following 

is a 
[ f9] 

possible realization of eq. (1.17) 

l c(n). 
4 2k , ( W )( n ) 

11< 
( 2. 24a) 
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( 2 .24b) 

Then from eq. (2.19), we see that the results are equivalent if 

we choose 

The Q2 dependence of these quantities is governed by the same 

anomalous dimension matrix 

2 preserved at all Q . 

-(n-1) (n-1) 
y = y ; so the equivalence is 

The analysis of the w
3 

structure function is entirely analagous. 

The result is 

( 2. 26) 

where 

( 2 .27a) 

or 

( 2 .27b) 

The Nachtmann moments [ 9]of the structure functions extract out 

the contributions of the operators of a given spin. In the parton 

model language, they extract out the contribution of a given moment 
~ 

of h. The Nachtman moments are 
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~ 

= 2:[(\);;,j)(n)(~(Q2)) ~ JW~n~(g(Q2))]g\n+l)(Q2) 
j 'J J 

( 2 .28a) 

( 2 .28b) 

( n + 2)( 1 + 

The Nachtmann moment have the following important virtues: 

firstly, they give target mass independent results, so that all scaling 

violations are logarithmic. Secondly 1 each Nachtmann moment depends 

only on a single moment of tl:e decomposition functions. These have 

the simple scale dependence dictated by eq. (2.14). 
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III. SEMI~INCLUSIVE LEPTOPRODUCTION: 

A. DOUBLE MOIVIENT ANALYSIS 

Consider the process 

B\J(q) + N(P)-+ M(P') +X ( J' l) 

where B is a spacelike gauge boson (photon, w-) or , N is a 

1 d M . l • h" [ flO] nuc eon an , lS a ~lg ~" meson . we charateri~e the 

meson momentum P' by a single invariant w
11 

The relevant squared 

matrix element is then 

l "' d4 iq • X u xe ~ 

X 

t 
<.: P!Y(x)jP' ,x><P' ,XIJ\J(O)IP > 

where J is the appropriate weak or electromagnetic current. 

(1. ) gives the covariant QCD parton model prediction 

for this matrix element. Schematically 

dW~v dWv~ 
~l~I- (P,q,wH) = j~k Jdpdp'dP'o(wH -wH(P' ,P,q))I\/P' ,P') d~~(p,p' ,q)Gip,P) 

( J. J) 

Equation 3.3 describes the hadronic process in J steps: a) The 

deeomposition of the hadron (momentum P) into a 5 parton of 

momentum p plus anything, deseribed by G.(p,P) 
J 
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b) Scattering of this parton to produce a k type 
. dWki . 

else. described by __ u_ (p p r q) ' dp' . '. ' ' . 

of 

p' and 

c) Decay of the final parton into a meson of momentum P' and anything 

else, described by Dk(P' ,p' ). 

The final state momentun1 P' enters only in step c (the decay function), 

the initial state momentum P enters only in step a (the decomposition 

function). 

If on P, the function ties the argument of the 

decay function to P. This obscures the 3 step nature of the proc:ess 

and therefore leads to urmecessarily complicated results. 

Thus we c:boose to p independent. The only possibility 

which seales with P' (this makes for simple moment statements) is (up 

to trivial scalings) 

The partonic analogue of this variable is 

(Jj -

pr 

p' 

where nr is the argument of the decay function in eq. (1.27). 

( 3' 4) 

( 3. 5 ) 

Kinematic l::imi ts can be placed on WH by requiring that the X 

of eq. (J.l) be a positive energy state with mass ..:_m (baryon number 

conservation). This, and analagous considerations for the partonie 

process, give 



1 -

XH + 
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XH 1 
< U:\ < 

XH 
1 

-- H~- xH 

t;, 

1 - X 
---<w<l 

X 

- XH 
(J .6a) 

- XH 

( 3 .6b) 

The factorization theorem breaks down in the initial parton frag-

region, i.e. whenever 

This implies 

(Jj 

p 1 = ap; a > 0 

a 
X 

( 3 0 7) 

< 0 ( 3 0 8) 

We must therefore study those values of wH which cannot 

arise from partons with w < 0. From eq. ( 3. 5 ) , and from 

the restriction nr > 0; this requirement becomes[ fll] 

( 3. 9) 

With this restriction, and with eq. (3.5), eq. (3.3) becomes 

1 
R. z:; J dx 

j, k I; 
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where we have parameterized p by u,x, and ¢; and p 1 by w. Note 

that all of the dependenee on 1.0H resides in the convolution in curly 

brackets. Thus, taking moments with respect to wH gives 

This equation has exactly the same form as eq. (2.5) with the 

replacements 

( 3 .l2a) 

Thus if we take Nachtman moments of the structure functions of 
dW]JV 

H 

~· H 
we get sim91e results. By analogy to eq. ( 2. 28a ) , we get 

M~m,n )( Q2) =f t;n-ldt;( 1 +m~t;2fl w~-ldwHld~H - 2 dWTH l 
o Q o H dwH 

1k J - 2 J n + 1) . 
~ Cm n) l 

(
dW_ .~., ' 

3 dw ( g( l.1) ) g j ( cf) 

( 3 '13) 
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Analagous equation are trivially derived from eqs. (2.28b) and (2.28c), 
dWlJV dWlJV 

The structure functions of H __kj_ and dw are defined by analogy 

to eq. (2,8), The superscripts (m,n) of the partonic structure 

functions in eq, (3.13) denote their double moments with respect to 

( th ) ( th ) x n moment and w m moment e.g. 

(
dWlk')(m,n) ~ 2 Jl 

J ( (Q-)) = dw g 
0 

d n~l Jld·· m~l dWlkj( ~(Q2)) 
X X W W dw X ,W , g 

0 

( 3.14) 

The double moments M(m,n) (r = a,b, c) have all of the virtues 
r 

of the Nachtmann moments in the inclusive case. They give rise to 

target mass independent results involving only one moment of the 

distrihution and decay functions. The latter quanti ties have scaling 

violations governed by simple algebraic equations ( eqs, ( 2.14) and ( L 29)), 

In appendix I, we will discuss the kinematic complications which 

occur when the variable is used instead of wH, and 

~:.oments are used instead of Nachtmann moments, 

B. Factorization 

rr th d • 
~o zero or er 1n the kinematics of the Feynman diagram of 

where 

dw dw 

w) + 0( a ) 
s 

(3.15') 

for any of the three partonic structure functions 

and 
d( \)w 

3
kj ) 

dw 
Thus the double moments of this 

' f t th quantity are lndependrmt o n and m o zero order, i.e. 
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A 'k + 0( a ) 
J s ( 3.16) 

If we take appropriate non-singlet differences (which are desribed 

in appendix II), only one linear combination of distribution and 

decay functions will contribute, so the sum over parton types in 

eq. (3 .13) collapses to one term. The result is then [ fl2] 

-~,i m,n) (3.17) 

where A is a pure number (independent of m,n and Q2 ), and M(m,n) 

is any of the three types of double moments. 

The lowest order result factorizes into a function of m and a 

function of n[flJ], This factorization does not persist in higher 

orders, since the x = 1, w = 1 kinematic constraint no longer applies. 

S k .[lO]h d d bl t t' h d ' '. f a aJ. as propose a ou e momen ra lo w ose evla-clon rom 

unity measures the breaking of factorization. It is 

M( m, n )M( k , 9, ) 
Rm' n; k '9, - ( 3 18 ) 

- ~( k , n )M( lrl , 9, ) • 

From eq. (3.13), the moments of D and g drop out in this ratio, 

giving 
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1 + 
a ( Q2 ) 2 

s 6m, n i k, 9- + 0 ( as ) . ( 3 .19 ) 

~ 

Where ~: is the (linear combination of) structure function(s) 

appropriate to the Nachtmann moment being taken. 

The ratio R has the following useful properties 

1. It measures the QCD induced factorization breaking in a target 

mass independent way. 

2. It involves no decay or distribution functions, thus A is 

the only necessary phenomenological input. 

The n m ·k 9- • dW 
f3 ' ' ' correspond to the non-leadlng logarithm in dw 

I 

(the unrenormalized structure function). Thus R measures a 

n0n-leading log effect. 
~ 

S l . [ lO ] h 1 1 t d ' dW , a ml . as ca cu a ,e _ tne relevant parts of dw, which arise 

from the of The results for the three types 

of moments are 

6
(m,n;k,R-) 
a 

8 (m-1 1 n-1 1 m+l 1 n+l 1) 
- L - L -+ L - L -
3 j~l j i=l i j-1 j 1=1 i 

+[ (m,n)-7-(k,£)] -[(m,n)-?- (k,n)] - [ (m,n)-?- (m,R-)] (J.20a) 
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+ [(m,n)-+ (k,9,)] - [(m,n)-+ (k,n)] - [(m,n)-+(m,9,)] 

( 3.20b) 

8 (n-1 1 m~l 1 n+l 1 m+l 1 2 
"' J :z; -J. :z; i + :z; -J. :z; i + ( m + 1 )( n + 

j=l i=l j=l i=l I 

+ [(m,n)-+ (k,9,)]- [(m,n)-+ (k,n)]- [(m,n)-+ (m,R,)] 

( 3. 20c) 

The subscripts a, b and c refer to the type of Nachtmann moment used. 
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APPENDIX I: THE VARIABLE ZH 

H~ t t t [ 1 ' ll] f • • 1 , • 1 t d ~ o th 1v1ctny rea men· ,s ·· o sem1-1nc us1ve ep ,opro uc·vlon use e 

variable ZH: 

For massless targets, P np, so 

• pt 
ZH:: p • q 

( Ll) 

P • p' n' =n 1 Z. p • q ( L2) 

Thus, in this limit, ZH is effectively independent of P, and the 

relationship between ZH and Z is triviaL Equations for double 

moments with respect to X 
H 

and can be derived which are 

analagous to eq. (3.13), and the results factorize to zeroth order. 

We now show how target mass corrections alter the zero order 

xH, ZH double moments. 

From eq. ( L 24). we get 

• O( n 1 
) 

l dx 
2 
X 

dW( p 'pI 'q) ~ 
----,,----

0 
G( u ) 

d3p'l2pt 
( LJ) 

where we have taken a trace of the gauge boson indices and suppressed 

the parton type indices. 
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The relationship between ZH and xri'n 1 ,u,x,ul, and Z is very 

[ fl5] complex . 

tb However, if we work to zero order in a
8

, the kinematics 

simpli since 

pl p + q ( L4) 

thus 

t. p 2( p + q ) • p 2 
z = nr nt (] t ( 1 + m ) H • q 2P • q UX]{ 2 

Q 
(I. 5) 

Equation (1 . .3) becomes 

0 (z ~ n t ( 1 +ux m
2 

)) 
H 'I HQ2 

( L6) 

th The zero order structure functions are kinematically constrained 

to be 

~: o: 0 ( l - X ) 0 ( 1 - Z ) 

Thus 

+0( a ) 
s 

( L 7) 

( L8) 

Note that the argument of the deeay function depends on the variable 

u, which describes the initial hadron 1 s deeomposition, so the three 

step nature of the process is obscured. 
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Taking double moments with respect to xH and ZH 1 and keeping 
2 

only terms up to 0 (m2 ) gives 
Q 

dWH ( m,n )_ ( JR-l n-l . dWH( xH' ZH' Q
2 

) 
dZ =) 1-I xH d1fd~ -~;::r---

H 

The term proportional to 
2 
~ (n + 1) 
Q2 

comes from taking 

instead of Nachtmann moments, and the term proportional to 

(I, 9) 

xH moments 

2 
( m - 1 ) n + 3 .f!l_ f ' Z ' t d f B th f th - --2 comes rom uslng H lns .ea o wH. o o ese 

n + 2 Q 

terms give rise to kinematically generated scaling violations, the 

latter term also breaks factorization, 

To get a quantitative estimate of these effects, we will take a 

distribution fu:nction of the form 

so that 

~(n + 3) 
g 
~(n + 1) 
g 

( LlO) 

n( n - 1) ( Lll) (n + 3)(n +4) 
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The QCD induced scaling violations to lowest order are given by (ref.l) 

(n) _ 4 1 2 

[ 
n l d - 27 4 j:l J ~ J n( n + 1) 

Thus, to lowest order in a ( Q
2

) s 

2 
and m 

Q2 

d 
[ 

dWH ( )'] 2(d(n) + d(m)) 
Q _ 1 (-) m,n = 

dQ og dZ - - 2 2 
H log( Q I A ) 

4 2 
+ 0( cl ( Q2 ) ' m4' a ( Q2 ) m2 ) . 

s Q s Q 

For m = J, n = 4, 2 2 
Q = 5 Ge V and A = • 5 Ge V we get 

( Llla) 

( I.llb) 

( I.12) 

( I.lJ) 

( I.l4a) 

2 m~ ( n + n\ J( ~ ! ) 4 ) [ ( n + 1) + ( m - 1) ~: ~ ] = ·55 
Q . 

( I.l4b) 
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Thus, even at a moderate value of the target mass corrections 

are important, Furthermore, at large m and n, the target mass 

corrections go like m + n, whereas the logarithmic QCD scaling 

violations go like log(mn), so the target mass corrections become 

increasingly important. 

We now proceed to compare target mass corrections with higher order 

QCD corrections as sources of factorization breaking, The treatment 

of the QCD corrections, neglecting the target mass proceeds by direct 

analogy to the derivation of eq. (J,l9). The~order a corrections s 

( dW)(m,n) · f (ll) Th f th' to dZ have been computed ln re , . e result o lS 

analysis is 

~ 1 

(~.)(k,n )(dWH)(m, !G) 

dZH dZH QCD 

l n-1 1 m+l 1 n+l 1 1 l l 
"':"~..,...+ ~"':" ~-+ --mn 
J i=l l j=l J i=l i (m+l)(n+l) 

+ [(m,n)+(k,JG)j - l(m,n) + (k,n)) - [(m,n) + (m,JG)j 

( Ll5) 
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The target mass 0 th correct1on to this ratio, to zero order in a 
2 s 

and first order in m 
-- is, from eqs. (I.9) and I.lO) 
Q2 

(
dWH)(m,n) (dWH) (k,.Q,) 

dZH dZH 
- l 

(dWH~k,n) tdWH)(m,~) 
1ZH -~ ( dZH 

. target mass 

m
2 

n(n - 1) 
Q2 (n+ 4 )(n+ 2) (m- l) + [ (m,n)+ (k,~)] - [ (m,n)+ (k,n)] 

- [ (m,n)+(m,~)] ( Ll6) 

Consider again Q2 = 5 GeV2 and h = •5 GeV. A typical case 

involving low moments is m ~ n ~ 4, k ~ ~ = 2. Then the QCD 

correction of eq. (I.l5) is •084, while the target mass correction 

of eq. (I.l6) is •058. So once again, target mass corrections are 

important at a moderate value of Q2 . 
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APPENDIX I I . 

In this appendix, we discuss quantities which depend only on one 

linear combination of distribution and decay functions, so that the sum 

over parton types effectively collapses to one term. 

The symmetries of the strong interactions which are relevant to 

arguments about distribution and decay functions are those which 

interchange parton types. The only possibilities are charge conjugation 

(c) 

-C: q ++ q 
(ILl) 

G -+ G 

(where q is any quark and G is a gluon) and an isospin rotation by 

TI about the y axis ( R) 

R: 
u -+--~ d 

-d others unchanged. 
u ++ 

Consider the difference between the structure functions for 

( IL2) 

't 
TI 

't 
TI , TI and TI final state hadrons. The difference is odd under 

both R and C. This implies that only one linear combination of 

decay functions is relevant 
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(I. 3) 

where 
1 k :::: u 

-1 k ::: d 

\ = 
-1 k = u 

( L4) 

1 k = d 

0 otherwise 

In order to study the symmetry properties of the initial state, 

we will consider seperately the cases of electromagnetic and weak currenta 

A. Electromagnetic currents: 

In schematic form, eq. (3.10) reads 

Taking a 

dW Tit 
H 

+ 
7T ' 7T 

dW 7T-
H ~ D 

- d~ 

difference for the final state 

.!: 
k, j 

~ 

(II.5) 

(II .6) 

The partonic structure functions 
dWkj 
~-- are even under charge 

dwH 
conjugation since the electromagnetic current is C even. Since Ak 

~ 

is c odd, only the c odd part of g. 
J 

contributes, thus initial 

state gluons are irrelevant. Thus the relevant graphs to order 

are those of fig. (2) and the interference between the graphs of 

a 
s 
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figs (1) and (J), But all of these graphs have the following parton-

type structure 

+ ( IL 7) 

thus 

~ 

D ~~ g + O(a;) (II,8) 

where 

( IL9) 

2 
Thus, up to order as terms (which govern next-to-leading 

order scaling violations and factorization breaking and thus are 

virtually unobservable), the difference between the structure 

t functions into 'IT and 1T involves only the linear combinations 

g and D. 

B. Charged Weak Currents: 

The situation here is complicated by the fact that the cos8 and c 
sin80 currents (@ 0isthe Cabibo angle) have different flavor structures, 

However the resulting sin2e C terms make a negligible contribution to 

then t - n- difference. Consider first the case of an initial quark 

(or antiquark), 
2 The final partonic state, up to order a is a quark 
s 

(antiquark) with or without a gluon. The final state fermion must 

. ' 1 carry lsospln 2 in order to contribute to the t 
1T -'IT difference. 
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However, the sine0 
1 current carries isospin so the initial 

quark must be an isosinglet (sea) quark. Thus the contribution of 

quarks (antiquarks) struck by sine
0 

currents is suppressed by sin
2

e0 

times sea quark distributions or sin
2

e0a; , Initial gluons struck 

by sine
0 

currents are suppressed by assin2 e
0

• 

By similar reasoning, the charm-strange part of the cose0 

current does not contribute until order 2 
a . s 

Thus the relevant current for neutrino scattering is 

(ILlO) 

The vector current (JV) and the axial-vector current (JA) 

ahve simple transformation properties under RC 

(II,ll) 
RC: 

The parity conserving terms in 
dWk. 

J ( ' th 1 d 2 ~ J,e, e an structure 

functions) come from V- V and A- A terms, thus 

RC: (d:~j )' -? 

p.C, 

The parity violating terms (i.e. 

interference, thus 

( dWkj) 
\ dW C p. ' 
~ 

dWJkj 
-;:;,-..:"- ) come from V - A dw 

( IL12) 
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RC: 
dW3kj 

dw ( II.l3) 

The 1T ~ difference is given by eq. ( ii .6 ). Consider the 

parity v~olating case. By definition, 
dW3kj 

since dw is odd, only the part of 

Ak is even under RC. 

g. which is RC odd 
J 

But 

contributes, so initial state gluons are irrelevant. 

Thus the relevant graphs to order a are those of figs. (1), s 

(2), and (3) which have the parton type structure 

where 

where 

1 j :=: d k 

\) -1 j :=: u k nkj 

o otherwise 

Thus eq. (II.6) becomes 

\) 
1T 

dWJ~) 
dU]{ 

~ 

_ dWJ 2 D- gv + O(a ) 
ow 3 8 

~\) "' \) ~ 
gJ - £.1 nk ·Akg. . J J J,k 

g 
d 

u 

d 

(II .14) 

(IL15) 

( II.l6) 

( II.l7) 
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For antineutrino scattering, we need only interchange u with 

d in eq. (II.l5), so the relevant distribution functions is 

(II.l8) 

The analysis of the parity conserving structure functions for 

the difference is complicated by the fact that both initial 

state gluons and quarks contribute. The gluon contribution can be 

eliminated by also taking the difference between proton and neutron 

initial states. Then, by steps analagous to those leading to eq. (II.6), 

the combination gd + gu contributes to neutrino scattering, and 

-gu - gd contributes to antineutrino scattering. A neutrino

antineutrino sum may be used instead of the proton-neutron difference. 

The resulting dWkj/dw is even under R (which exchanges v and 0), 

but is odd under R, so only the R odd part of g. 
J 

contributes, 

and initial gluons are irrelevant. The relevant distribution function 
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FOOTNOTES: 

fl. This is based on the phenomenological analysis of scaling violations 

in electroproduction in ref. 3. Clearly the scale M will be 
0 

process dependent, so the situation in other processes may be better 

or worse. 

f2. The proof of the factorization theorem shows that the f 1 s can 

be chosen to process independent. Thus eq. (1.5) preserves the 

process independence of the f for all ~. 

f3. By 11 target 11 mass, we mean the mass of any initial state hadron. 

It is easy to incorporate the spin of the initial hadron. For 

instance, if the hadron has spin ~ (represented by the spin 

4-vector s~), eq. (1l0a) becomes, by the parity invariance of 
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the strong interactions. 

where the superscripts o and 1 represent respectively the 

hadron~spin-zero and the hadron-spin-one components of the 

distribution function, and 

The spin sensitive variable 

h is the helicity of the parton. 
11 . p 

is invariant under scaling 
um 

of p, thus it has no effect on the factorization of the infrared 

sensitivity. 

f5. This reabsorption of IR singularities is very similar to that 

similar to that of ref. 6. 

f6. It is shown in ref. 5 that the covariant parto~ model (i.e. the 

th QCD parton model to zero order) gives rise to the ~-scaling 

formulae if all logarithmic scaling violations are ignored. These 

scaling violations do not appear in the parton model until the 

second order. 

f7. The variable X is independent of 4> in any frame in which 
-+ p 

-+ 
are collinear. and q 

f8. We must take account of the fact that the definition of wvv 
H 

adopted in ref. 3 is twice our definition. 

f9. The predictions of the OPE are invariant under changes in the 

definition of the operators. Similarly, the predictions of the 

QCD parton model are invariant under changes in the choice of r. 

Thus we need only prove that the predictions of the two methods 
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coincide for one set of choices. These matters are discussed in 

ref. 7. 

flO. We choose a light meson because we do not know how to include 

final state mass corrections. 

fll. This kinematic cut was used by Sakai (ref.lO), Altarelli 

et. al. (ref. ll) object to it on the basis that the point 

UJr = 0 is 11 arbitrary11
• Our argument shows that is is not; any 

w H < 0 includes contributions from the fragmentation region; 

wH > 0 does not . 

fl2. The lowest order scaling violations of the non-singlet moments 

~(n+l) of eq. ( J .17) are easy to unfold: the g scale with anomalous 

dimension y(n) and the D(m) scale with y(m) [there is no 

destinction between uncoming and out going anomalous demensions 

to lowest order] . Thus, 

dimension and the lowest 

M(m,n )( Q2) (~n 0
2

1 i) 
>?,n Q~ji\2 

where 

4 D 
n ( JJ-2nf) 

using the lowest order quark 

order B fu.nction gives 

-D -D 
n m 

[ 1 + 0( a )] s 
M(m,n \ Q2) 

0 

where n f is the number of flavors. 

anomalous 
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flJ. This type of factorization is not tote confused with the 

factorization theorem. 

fl4. Initial and final state gluons are irrelevant because we are 

taking non~singlet differences. Further, the vertex correction 

graph of fig. J does not contribute to order a , because it s 
th has the same kinematic structure as the zero order graph 

of fig. L 

fl5. The actual relationship is 

ZH = n'{Z+xH[ (2Z-w)ux:?- ~ /Z(Z- w)/ ~ux-1;)2+ ~ux-!;) cos¢] 
Q Q 

+ 
where ¢ of the azimuthal angle between the components of p' 

and P orthogonal to the + + + p, q axis in a frame in which p and 

+ q are collinear. 

FIGURE CAPTIONS 

Fig. 1. Zeroth order amplitude for the process q(q) + Bv+ q(q). 

Fig. 2. First order amplitude for the process q( q) + B v + q( q) +G. 

Fig.]. Second order amplitude for the process q(q) + Bv+q(q). 
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